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D Y N A M I C S  O F  C A P I L L A R Y  W A V E S  O N  A B U B B L E  

P E R F O R M I N G  N O N L I N E A R  P U L S A T I O N S  IN A L O W -  

V I S C O S I T Y  L I Q U I D  

O. V. Voinov UDC 541.24:532.5 

We examine the dynamics of capillary waves of small amplitude on a bubble, performing initially spherosymmetric 
pulsations in a liquid of low viscosity. We study in the shortwave approximation the characteristics of the growth of surface 

disturbances with arbitrary pressure differentials and polytropic exponents. We determine the asymptotic time dependences of 

the mean-square amplitude of the disturbances and obtain approximate formulas for the amplitude growth characteristics for 

a wide range of parameters. The existence of a single universal dependence of the wave index is discovered. A strong influence 

of the polytropic exponent near the isotherm on the wave growth characteristics is found. We establish an analogy between the 

growth of inertial-capillary waves on the surface of a nonlinearly pulsating bubble and on a plane surface with constant 

acceleration. It is shown that in the case of large-amplitude pulsations the low viscosity approximation is capable of describing 

the nonsmall effects of change of the wave growth characteristics. We determine the influence of viscosity on the dynamics 

of the disturbances, and note the viscosity-associated stratification of the universal relation for the wave growth characteristic. 
1. Asymptotic Description of Nonstationary Short Waves on a Pulsating Bubble. We shall examine the small 

perturbations of the spherically symmetric pulsations of a gas bubble in a liquid that is at rest at infinity. We denote the initial 

gas pressure by P0 and the pressure at infinity by Po.. The dynamics of the disturbances on the pulsating gas bubble depends 
on the polytropic exponent k and the pressure ratio parameter e and the capillarity parameter a: 

t = po/p** , cr = a ' / p |  a o = a / e  

(or' is the surface tension coefficient, R o' is the initial radius, the primes indicate dimensional quantities). We shall introduce 

the viscosity influence parameter later, after accounting for the inertial-capillary effects in the ideal fluid formulation. 

We examine the limit a < < 1, when the capillary forces do not influence the change of the bubble radius, defined 
in dimensionless form by the equation 

2 

R R  + ( 3 / 2 ) R  = eR - a -  1, R(0) = I , R ( 0 )  = 0, 
t 

R = R ' / R o ,  t = t ' ( p |  (I.1) 

The amplitudes of the small perturbations of the surface, represented by a series in the spherical harmonics 

r =  R + E a  Y(O,~), 

are found for n > > 1 from the equation 

Y'" + 2Zq(t)y = 0, q = - R " / R  + c r n 2 / R  s, 22 = n ,  y -~ a , R  3/a, (1.2) 

which remains valid even with account for the viscosity of the liquid, although it is necessary to give a different definition to 
the modified amplitude y (Section 7). 

Using the expressions for the linearly independent solutions of the equation (1.2) with t < T/2 (T is the pulsation 

period) and the formula for the characteristic index/z 1, obtained in [1] on the basis of Floquet theory and the WKB-approxi- 

Tyumen. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, No. 3, pp. 87-97, May-June, 1994. 
Original article submitted October 18, 1990. 

0021-8944/94/3503-0401512.50 �9 Plenum Publishing Corporation 401 



mation, we write the necessary (for analysis of the breakdown of the bubble surface) general solution of the equation (1.2) with 
accuracy to a constant multiplier in the form 

0 ~ t <  t~ - ~, y = ( l / q ( t ) ) V ' c o s O t L ( t )  + ~o), 
(1.3) 

t .  + (5 < t < t~ "-- ~, y = ( - 1 / q ( t ) ) t / ' c o s ( ] t L ( t . )  + ~o + : t / 4 ) e x p ( 2 K ( t ) ) l  

t.2 + ~ < t ~ T,  y = ( l / q ( t ) ) t / ' c o s ( 2 t L ( t  - T)  + ~o)exp(/zlT)l 

L(t)  = f ,r  dt, K( t )  = ~ - q  at; 
0 t~ 

(1.4) exp(,u,T) = 2exp(2,lKo)COS(2,tlo) , K ~ = K ( T / 2 ) ,  I o = L( t . ) .  

Here t. is the smallest simple zero of q(t)(q(t.) = 0); t. 2 is the second simple zero of q(t)(t. 2 = T - -  t.); ,p is an arbitrary 

constant; t5 ---- 0; X ---- ~ .  In the analysis of the dynamics of the disturbances the initial phase ,p is usually not known. Formulas 

(1.3) make it possible to exclude the unknown (in principle) parameter ~p if we convert to the mean-square amplitude (y2). By 

virtue of the real randomness of  the initial conditions for the disturbances, we can examine the phase ,p as an independent 

random quantity and perform averaging with respect to it. This procedure is logical, specifically, in the region of large values 

of the wave indices n. After averaging with respect to ,p in the interval [0, 7r], there follows from (1.3),(1.4) 

q,/~(t) (~) = 1 , 0 ~ t < t . - 6 ,  

- d ' - S ~ ( f l )  = exp(22K(t)), t. + ~ < t < t.2 - 6, 
(1.5) 

q',/~(t) (~) = exp(2~lT ), t~ + 6 < t ~  T. 

The first formula (1.5) corresponds to cavitation bubble instability [2], the second corresponds to Rayleigh-Taylor 

instability [3]; the formulas (1.5) also describe parametric instability of the bubble surface. In addition to these three familiar 

instability types, in practice the Kelvin-Helmholtz instability [4] may be important, but account for it requires a separate 

analysis, since it is associated with violation of the spherical symmetry of the flow in the undisturbed state. The fundamental 

difference between exponential instability of the bubble in the narrow time interval (t., T - -  t.) and parametric instability is 

clearly seen from the formulas (1.5). For an arbitrarily large value of 4kK o > >  1, when within the cycle the amplitude 

certainly exceeds all the allowable limits for small disturbances, we can indicate those values of 2~,L(t.) - (l + 1/2)r (l = 

0, 1 . . . .  ), for which/~1 - 0., i.e., parametric instability does not exist. On the other hand, in the case of  parametric instability, 

if it exists, there is present the effect of accumulation of exponential instability in each cycle [1], and failure may be caused 

by this accumulation. 

Formulas (1.5) make it possible to construct a theory of the time of destruction of the surface of  the bubble by short 

waves if we find the dependences of the coefficients on the following parameters: pressure differential 1/e, polytropic exponent 

k, capillarity a and describe the initial conditions for < y2 > .  Determination of the moment of failure with an accuracy greater 

than half the interval of  exponential growth of the wave r = T/2 - t. is not of interest, therefore it is sufficient to limit 

ourselves to the values of  K(t) for t = T/2 and t = T - t. .  

In contrast with [111 in addition to the limit e --, 0 we shall examine the (more difficult for description) region of 

moderate pressure differentials Po./Po = 1/e < 10. For validity of  the short-wave approximation it is necessary to require 

simultaneous smallness of  both parameters: tr and e, although for e --, 0 the maximal wave growth rate increases and the 

corresponding index n increases. For the manifestation of a significant influence of the capillary forces only in the short-wave 
region, it is sufficient to require that (7 < <  1. 

2. Technique for Determining the Indexes n of Growing Waves with Account for the Capillary Forces. For n > > 
1 the characteristic index ~1 depends basically on the magnitude of the exponent - -  the growth index 2~f'nK 0 in (1.4), if the 

pre-exponential factor is not small in comparison with unity, and for the wave spectrum it can be small only for individual 

values of the index n. We write the index of growth of the amplitude up to the middle of the cycle as 

t m 

H = d-~K o = d ' ~ f d S - ~ d t ,  q( t . )  = 0, R(/,,,) = 0. (2.1) 
t ~  

X ~ - ~ r  R _ 3 f k _ l )  ) 1~ - -  

t t + l  k - I '  
(2.2) 

Introducing the variable 
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we represent the acceleration and the velocity in the form 

2 

R4R "" 3 R (1 + <x) -I 
- k x -  1 ,  - -  - 1 - x -  = f ( x ) .  

1 + a 2 1 + a [(1 + I /a )x l  t/~ 

In accordance with (2.2) and (2.3), the minimal radius R m is described by the formula 

(2.3) 

R 3,,, = 1(1 + 1 / a ) x , I  -wk-~)  = (1 - x,,) (1 + a ) ,  (2.4) 

where there appears the parameter  x m 

The formula 

- -  the largest root of the equation 

/(x ) = o. (2.5) 

e = (k 1) (1 3 -3~k-1) - - R)/(R - 1 ) ,  (2.6) 

holds, and therefore it is not necessary to solve (2.5), we can specify Rm(r parametrically. 

We shall indicate in explicit form the relation Xrn(e) for e ---, 0: 

(I - x ) / A  = 1 + A,  + (1 + k/2)A2~ 

+ (I + / , 1 3 )  ( l  + k)a ' ,  + .... 

A = (1 + a)- t (1  + I / c t )  -l/ok-n, ,4t = A / ( k  - 1), a = e / ( k  - 1). 

We shall transform K o in (2.1), using the notations [I] 

(2.7) 

2 ---- n2b-2~ + cl)- l '  b m (1 + l / a )  1/30"-1). (2.8)  

We note that in [1] there is an insignificant as e --, 0 misprint - -  the exponent - 1  of ( i  + a)  is omitted. 

In accordance with (2. i)-(2.3) and (2.8) 

x m 

K ~  v / . ' = - - x ~ - , ;  
(2.9) 

~x.) = o,/(x) = o. (2.10) 

In place of x it is also convenient to use the variable 

y =  x / x  , y E  [ l / k , x ,  11. (2.11) 

Because of the singularity for k ~ I, the formula (2.9) is poor for calculations, moreover  the quantities g and x,  vary 

strongly for different k or e. More effective is the technique for determining the index n in which we use as the basic 

parameters those whose range of variation is independent of e and k. Therefore we can introduce the new parameters 0 and 

r whose values lie in the interval (0, 1): 

O ( k x  - 1) = Q ( x ) , x 2  2 / 3 o k - u 2 - -  (1 - O ) ( k x -  1), 
(2.12) 

y .  = l / k x , , ,  + W(I - l / k x  ). 

In view of Q(x.)  = O, the parameter 0 is connected with r 

1 - 0 = ~y~.X~-t) = u211 - (1 - ~)  (1 - l l k x ) l  v3ck-t). 
(2.13) 

From (2.8), (2.9), and (2.12) there follows 

n2aR 2,. = (1 - 0 ) ( k x  - 1) (1 + a ) .  
(2.14) 
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Considering (2.2) and the formulas 

J 

a = aoe = aoa(k - 1 ) , a  0 = a ' / P o R  o, 

we can transform (2.14) to the form 

n2ao = R~3*(I - 0)B, 

B = (1 - 1 / k x ) / ( 1  - 1 / k )  = (3/2)kf l .  (2.15) 

The new parameter/5 is indicated in (2.15), since it appears later in the basic formulas. 

3. Analyt ic  Descr ipt ion of Wave Growth  Index Ko(e, k, a) for Modera te  Pressure  Differentials  1/e. The integral 

K o (2.9) was studied in [1] for e --, 0 and individual values of k. Of interest is the region of moderate values of 1/e and 

arbitrary k < 1.7. 

Analytic determination of (2.9) with account for (2.10) is possible in the entire range 0 < ~ < 1 if we use some 

expansions with respect to the parameter 1 - y, which is relatively small. For f in (2.9) it is sufficient to take no more than 

three terms (as E ---, 0, only one) of the expansion 

f = ~ b ( I  - y ) ' ,  b I = (kx,,  - 1 ) / ( k  - 1). (3.1) 
~nml 

This expansion is ineffective for Q, since Q(y,) = 0, and in (2.9) there appears x/'Q. In place of (3.1) we write 

Q(y) = (y - y . ) , , . o - ~ -  ~ y - ~ y .  l t(y - l)". (3.2) 

The linear interpolation of Q in the interval (y.,  1) that was used in [1] corresponds to the first term of the series (3.2). 

With the aid of (3.1), (3.2), the integral (2.9) is reduced to one that can be calculated in terms of the elementary 

functions: 

"y--%/ Q o ) ( y  - y.)  (1 + - l) 
1 

Ko = ~ ( k  - ~) ( l  - y . ) b , ( 1  - y)  
Y .  

+ ~ ( y  - I) 2 + ...) d !  (3.3) 
y 

(~'1, ~'2 are constants). As a result we obtain from (2.9), (3. i)-(3.3) 

n '/~(l - V,) l 
Ko=~ ~+r e, e=l+~(So+~)(l-~ ) 

+41(1  -~/)2 a 3a+  ~2 + ~ h  + Bo( fl + 2,5A + 2a) , 

A = 1 -- l / / c x ,  a'---- ( l / 8 ) ( 1 / x  -- l ) / ( k -  l ) ,  

a 0 = 6ale)Ca + a)(llO - l)(l - W), 

where the function F(~b) does not differ strongly from unity. For F = 1 and x m = 1, (3.4) agrees with the approximate 

expression for K o with account for a as e ---, 0, found in [1]. 

Most important are the values of K o for the wave of maximal growth, which corresponds for the middle of the cycle 

to maxH with R = R m. This maximum also corresponds approximately to the maximum of the coefficient of increase of the 

amplitude over severa l  cycles if ] cos (2Rio) [ - 1, 2H > >  1. The maximum of H with respect to the index n is 

determined by the conditions of  a maximum of ~l/4K 0 with respect to if, which yields the equation 

~(~) = o o + ~ = o, Qo = + /) - (~ - y.)v~y." (3.5) 
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Fig. 1 

Here and in the following for brevity we indicate the values of 6, 0, y, at the point maxH without special indices; the values 

at the other points are specified. 

We note that the corresponding contribution of F in (3.5) does not exceed 10% of the terms in f2 o, even for e = 0.8; 

moreover,  it varies little for different e and k. 

4. Unive r sa l  Rela t ions  for the G r o w t h  Index  H.  Of interest is the derivation of simple formulas that can describe 

with adequate accuracy K 0, 6, 1 - -  0 at the point maxH as functions of k and e. The parameters 6 and 1 - 0 depend weakly 

on k, in contrast with the parameters that are calculated in terms of the y ,  and I2 for maxH, which depend strongly on k. This 

is the advantage of the variables 6 and 1 - 0. The maximal deviation from the average value in the range k = 1 to 1.6 is about 

6% for 6 and K o, while for 1 - 0 it is only 1.4%, if e = 0. This opens up the possiblity of simple approximations. We can 

represent 6, 1 - 0, and K o well by forms that are linear in k or with error much less than 1% by the following expressions 

for e --, O: 

g' = 0,2666k -~ 1 - 0 = 0,1636k -~ K a = 0,504k -~  (4.1) 

It is not difficult to find a more general approximation of K o, suitable for moderate pressure differentials l /e ,  if we 

note that in (3.4) at the point maxH the factor fl varies most strongly with variation of e and k. Therefore we can seek an 

approximation of the form K o - f(fl, k)x/fl', where f is a form that is linear in ft. The formula for K o for the entire range of 

pressure differentials 1/e = 1 - ~  is found in this way: 

K o = (a z + a~)'C'fl', a I = 0,673, a2 = 0,204k - 0,295. (4.2) 

The accuracy of (4.2) is no less than 2.4.10 -3 for k >_ 1. I and no less than 10 -2 for k = 1. For  e ---- 0 the formula (4.2) 

is not inferior to the corresponding formula (4.1). For small pressure differentials (e --, 1, fl --, 0), (4.2) reduces to the form 

K o = 0 ,550  V(I - E ) / k ,  (4.3) 

which differs very little from the exact formula of the linear theory, including the coefficient 0.551. 

Calculations show that the parameters 1 - 0 and 6 at the point maxH are approximated welt by the formula 

F(k,  e) = F(k ,  0) + (a t + a2(k - l ) )(k - kx  ) / ( k  - 1). (4.4) 

For F = 1 - -  0 a 1 = 0.0238, a 2 = 0.005, while for F = 6 a l  = - 0 . 0 7 5 ,  a 2 = 0.064. The accuracy of the formula for 

1 - 0 is better than 1% for any e, if 1.1 _< k _< 1.6. For 6 the accuracy is better than 1% for e < 0.8. 

The complete study made of the parameters of the point maxH is of particular importance in connection with the 

unusual possibility of obtaining (thanks to this) an approximate description of the entire curve H(n) as a whole as a function 

of e and k. We introduce the normalized quantities 

~I = H / H , ~ , ,  -n = n / n o ,  (4.5) 

where 

n o = b((1 + a )  (~: - l ) / a ) v  2 (4.6) 
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corresponds to H = 0. The relation H(n) is shown in Fig. 1 for ~ = 0 and k = 1.4. The analytic estimates for fi --, 0 and the 

numerical calculations show that the variables t and k in the ranges 1/t = 2.5-oo and 1.I < k _< 1.66 have practically no 

influence on H(n), which can be considered to be universal. For ~ = 0 the maximal deviation of the values of H(n) from the 

case k = 1.4 is about 0.5%, while for t = 0.4 it is about 1.5-2%. The universal approximate relation (4.5) for H(n) effectively 

solves the problem of simple representation of the function of three variables H(e, k, n). 

5. Influence of  the Pressure Differential 1/t and the Index k on the Parameters  of the Wave of  Maximal Gro~th .  
The dependences of maxH and the wave index n on e are given in Figs. 2 and 3 for k = 1.1. 1.4, 1.6 (curves I-3) in 

accordance with the formulas of Sections 3 and 4. For comparison the asymptotic relations for e --, 0 are shown by the dashed 

curves. We see that maxH and the corresponding wave index n for ~ > 0.15 differ significantly from the asymptotic relations. 

We see from Figs. 2 and 3 sharp increase of n and maxH with increase of the pressure differential l/e, which agrees 

with [1]. We note a significant new characteristic: according to the graphs, the polytropic exponent k in the region k - 1 to 

1.2, close to the isotherm k = 1, has a strong influence on the wave index and the values of maxH for t _< 0.2. This can be 

explained through the significant influence on the minimal radius Rm(t), which is reflected in Fig. 4, where the curves I-4 

correspond to k = 1.0, 1.1, 1.4, 1.6. 

Forexplanationwe note the quite simple relations that are associated withtheapproximations of the form (1 - -  0)k/3 - 

1 - -  t ,  K o - ~/(1 - -  t)/k, which are reasonable for moderate values of 1/t and for t --, 1. We obtain from (2.15) and (2.1), 

respectively, 

n~ 0 = 0,42RT,(ak--l)/2 IV'~-- e", (5. I) 

cr~'H = 0,37k~, ~ - ' v '  (1 - e)3/'k -'/2. 

Writing the formulas (5.1) in the form n = 0.42X and H = 0.37Y, we represent the ratios of the exact values of n 

and H to X and Y in Fig. 5 for k = 1.1, 1.6 (lines 1, 2). We see that the ratios n/X and H/Y are close to the indicated 

constants for e > 0.1. The error of the first formula (5.1) in the region e < 0.4; 1.1 _< k _< 1.6 does not exceed 5%. We 

note that for e ---> 0 the value of n/X differs little from 0.40. 

6. Analogy with the Instability with Constant  Acceleration. We introduce the Bond number Bo, defined in terms 

of the wavenumber k w and the maximal acceleration gm' for R = Rm: 

Pg" P,, n Bo-o,~ ., g ' , , , = R ; ~  j , =  
pro' R,,,% �9 

From which with account for (2.3), (2.14) we obtain 

B o =  (1 - 0 )  -~, 0 < 0 <  1. (6.1) 

For the value of i - 0 at the point maxH, Bo has interesting characteristics: it depends weakly on k and e. Thus, for 

e = 0, Bo = 6.12 to 6.3 with k = 1 to 1.6; for k = 1.4 Bo = 6.23 with e = 0, and Bo = 5.83 with t = 0.4. Thus, the 

value of Bo of the wave of maximal growth is approximately constant with variation of e and k. 

It is advisable to introduce the second Bond number B-'~, defined on the basis of the average acceleration in the time 

interval where the boundary acceleration R'" > 0. If we consider that for e ---, 0 and k = 1.4 the average acceleration g'  --- 

0.45 gin', then from (6. I) there follows 
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Bo = pg'/a'~ = 2 , 8 .  
(6.2) 

We shall compare the value of (6.2) with the corresponding Bo number in the case of constant acceleration of a plane 

boundary. In this case the wavenumber k w is found from the condition of a maximum of the difference kwg' - -  kw3a'/O and 

Bo = 3. This means that Bo based on the average acceleration of the bubble surface is close to Bo with constant acceleration 

of a plane boundary, i .e. ,  there is a definite analogy between the two different problems. 

It is also interesting to compare the maximal indices of the growth of the amplitude of the disturbances in the indicated 

cases. For g '  = const, the maximal index of growth over the time r has the form 

H = rV(2/3)k, .g' .  

We shall calculate H as a function of ~- and the average g'  for e ---- 0. We write the time 2~', during which R" > 0, 

for k = 1.4 approximately as 

2, = 3,1R 'R; pch-7 .. 

Hence, considering that g '  = 0.45 gin', we find H = 0.54x/n, K 0 = 0.54. This differs very little from K o = 0.461, which 

the exact calculation yields for e --, 0. 

Thus, with regard to the Bond number and with regard to the index of wave growth with strongly varying acceleration 

of the bubble surface near the minimal radius there is an analogy with the very simple case of Taylor instability with constant 

acceleration of a phase interface. This analogy is useful for approximate estimates and can serve as confirmation of the 

reasonableness of the calculations performed. 

7. Model  of  Influence of Liquid Viscosity. We shall examine the case of small viscosity, when its influence can be 

taken into account by the introduction of corrections to the equations for the amplitudes of the disturbances. The viscosity is 

small if the relative rate of change of the amplitude of a short wave (n > >  1) is sufficiently large: 

J.~/T~::~ 2vn2/R '2 = 2vk2, ,~. = ~ (7 .1)  

(u is the kinematic viscosity). 

For a wave with the frequency ~ the condition (7.1) has the very simple form co > >  2vkw 2. In order to account for 

viscous decay in the equation for the amplitudes, it is sufficient to consider the elementary solution of  the problem of the decay 

of a capillary wave on a spherical bubble in a spherically symmetric mass force field or include in the energy balance equation 

the corresponding expression for the energy dissipation in a potential velocity field. We write the equations of the dynamics 

of the amplitudes with account for small viscosity in dimensionless notations in the form 

+ - ( ,  - 1), ,  R + o , : R - ' %  = 

"1 = ( , , / R D , / p / p . ,  a = a ' / R ' o ,  k = , , / R .  (7.2) 

The transformation 

converts (7.2) to the equation 

a s -- R-- ~ e x p  - 2vln 2 
(7.3) 

y'" + [-(n + I/2)R"/R + anS/R 3 - 62oly = O, 

a~ = (2vxka,,) 2 + 2vxk2R'/R - ( 3 / 4 ) ( R ' / R )  2. (7.4) 

For n > >  1, of the three terms in ao2 it is sufficient to consider only the first. Equation (7.4) differs little from (1.2) 

if with account for the principal terms with respect to n the following condition is satisfied 

I - n R " I R  + an31R31 :,, (2vJd)2, (7.5) 
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which corresponds to smallness of the frequency shift ] ~o I 2 > > 802 or smallness of the decay 80. We can use the asymptotic 

solution (1.3) for determination of the quantity y(t), connected with the amplitude a by the formula (7.3). For the asymptotic 
solution (1.3) the inequality (7.5) agrees with (7.1). 

It is of  interest to examine the inequality (7.5) at each moment of  the pulsation. It is evident that it is always violated 

near the zeros of  q(t) = 0, t = t,, t = T - -  t,. Far from the zero of q with R > >  R,, we rewrite (7.5) with account for 
R" ~ - R - 4 :  

R -~ + aRn 2 :~  4van ~. 
(7.6) 

On the other side of the zero of q for R < R, it is best to represent the inequality (7.5) or (7.1) in some average sense 

for the interval (t,, T/2), where it is advisable to take n to mean the index of the wave of maximal growth. Then, using the 

relation (6.2) between the average acceleration and the characteristic wavenumber kw, we replace approximately the left side 
of (7.5) by 2on2/Rm 3, writing 

aR,,. :~  2v]n. (7.7) 

The first of the inequalities (7.6) and (7.7) is no more restrictive than the second. Therefore it is sufficient to require the 
satisfaction of (7.7). 

Formula (7.3) makes it possible to determine the influence of viscosity on the change of the amplitude of the 

disturbance. For half of the cycle it is sufficient to calculate the integral 

r/• dt 
t(=, ~) = ~ - ~ ,  

0 (7.8) 

and express the contribution of  viscosity to change of the disturbance amplitude a n by the coefficient exp (zSH), where 

A H  = - 2 1 v t n  2. (7.9) 

With increase of  the pressure differential (I/e --, ~ )  the coefficient I~ is a limited quantity, and there exists the limit 
of the integral (7.8): 

r~ dt 3V~ ~ ~ lira j -.~ = dR 
�9 -.o o R RZ~;_~__ 1- 2,975. (7.10) 

The fact of convergence of  the integral (7.10) for R = 0 indicates that the primary influence of  viscosity on the change of  the 

amplitude for e --- 0 is concentrated in the region of large values of the radius, far from the zone of exponential growth of the 
disturbances R < R,. 

The dependence (7.8) of the viscous decay coefficient I~, on e for k = 1.4 and 1.66 (lines 1, 2) is shown in Fig. 6. 

The effectiveness of the viscosity influence model (7.8), (7.9) is determined by the following question: is a finite (not 

small) effect of the influence of  viscosity on the disturbance growth index H, i.e., ] AH ] - H, possible with retention of 

the conditions of validity of the small viscosity approximation? It is interesting therefore to evaluate the maximal ratios 
~ 8  
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I AH ] /H, that are admissible in the framework of the small viscosity approximation. From the formulas (7.9), (5.1) and the 

approximate relation e - (k - -  1)Rm 3(k-I), following from (2.6) for nonsmall k - 1, for e ---, 0 we write approximately 

I~HI 2 , a  v~'(,~ - 1) U _ ~ o" (7.11) 

With the use of formulas (5.1) and (7.2), we rewrite the inequality (7.7) in the form 

o~o 2Ca2R,-.,(~*l~/2 ,~: 1. (7.12) 

Substitution of the expression (7.11) into (7.12) makes it possible to obtain the equivalent to (7.7) condition of validity 

of the small viscosity approximation for the waves of maximal growth: 

coR,,,(AH/H')2 .,1:: 1 (7.13) 

(c o = 0.1 to 0.25 for k = 1.6 to 1.3). The viscosity influence effect is large if AH/H = 1, i.e., the increase of the amplitude 

of the wave of maximal growth is completely suppressed as the result of the pulsation cycle. In this case with e < < 1 the left 

side of (7.13) contains the small parameter R m, and therefore the condition (7.13) is satisfied. Consequently, in the framework 

of the small viscosity approximation a nonsmall effect of the influence of viscosity on the development of the disturbances as 

a result of the nonlinear bubble pulsation cycle is possible. This fundamentally important conclusion characterizes the primary 

property of the viscosity influence model (7.8), (7.9). To clarify the obtained result we note that with increase of the pressure 

differential 1/e and reduction of R m the duration of the exponential growth of the disturbances decreases as Rm 5/2, because of 

which the contribution of the region of small radii (R - Rm) to the decay has the order -,fll~ m. The contribution to the decay 

of the remaining region, in which the amplitude of the disturbances does not increase but rather only decreases, increases by 

1/ff]~ m in relation to the contribution of the region of small radii. Because of the growth of the relative contribution to the 

decay of the region of large radii (R > R,), a significant effect of reduction of the amplitude of the disturbances in the small 
viscosity approximation is possible. 

The influence of viscosity on the universal dependence of the index H on the wave index n is defined by the relation 

2/via2 2 / ( /cx  - l)V'(l + ~x) v`  (l - 0), 

maxC'g~nKo) -- Ca~ eV4R~2max((l - O)V'Ko) (7.14) 

n:%(i-0) w', 0<0< I. 

Hence we see that the initial pressure P0 and the initial radius R 0' have very little influence on the influence of the 

viscosity on the form of the curve H(n) in the universal coordinates (4.5) - -  only as (P0/R0') TM - -  but the quantity e does have 

a significant influence. The influence of the viscosity on the dependence of H on n, determined with the aid of (7.14), is 

reflected in Fig. 7 for nitrogen or hydrogen bubbles (k -.-. 1.4) in water with v = 10 -2 cm2/sec, R O' = 0.1 cm, P0 = 0.1 

MPa, tr' = 0.072 N/m, and also e = 0.1, 0.2 (lines 1, 2), the curve 3 corresponds to v = 0. We see that the viscosity leads 

to stratification with respect to the parameter e of the universal dependence of H/Hma x on n/n o. It is important that the viscosity 

has a noticeable effect under real conditions of gas bubbles in water. It is evident that change of the viscosity of the liquid in 

the experiment may serve as a regulator of the dynamics of the disturbances. 
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